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ABSTRACT
Humans excel at forming mental maps of their surroundings, equipping them to un-
derstand object relationships and navigate based on language queries. Our previous
work SI Maps [1] showed that having instance-level information and the seman-
tic understanding of an environment helps significantly improve performance for
language-guided tasks. We extend this instance-level approach to 3D while increas-
ing the pipeline’s robustness and improving quantitative and qualitative results. Our
method leverages foundational models for object recognition, image segmentation,
and feature extraction. We propose a representation that results in a 3D point cloud
map with instance-level embeddings, which bring in the semantic understanding that
natural language commands can query. Quantitatively, the work improves upon the
success rate of language-guided tasks. At the same time, we qualitatively observe
the ability to identify instances more clearly and leverage the foundational models
and language and image-aligned embeddings to identify objects that, otherwise, a
closed-set approach wouldn’t be able to identify.
Project Page - https://smart-wheelchair-rrc.github.io/o3d-sim-webpage
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1. Introduction

Vision-Language Navigation(VLN) research has recently seen significant progress, en-
abling robots to navigate environments using natural language instructions [2, 3]. A
major challenge in this field is grounding language descriptions onto real-world vi-
sual observations, especially for tasks requiring identifying specific object instances
and spatial reasoning [4]. There is an increasing interest in building semantic spatial
maps representing the environment and its objects [5]. Works like VLMaps [2] and
NLMap [6] leverage pre-trained vision-language models to construct semantic spatial
maps (SSMs) without manual labelling. However, these methods cannot differentiate
between multiple instances of the same object, limiting their utility for instance-specific
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queries.
Our previous work [1] proposes a memory-efficient mechanism for creating a 2D se-

mantic spatial representation of the environment with instance-level semantics directly
applicable to robots navigating in real-world scenes. It was shown that Semantic In-
stance Maps (SI Maps) are computationally efficient to construct and allow for a
broad range of complex and realistic commands that elude prior works. However, the
map built in this previous work is a top-down view 2D map based on a closed set and
assumes that the Large Language Model (LLM) knows all object categories in advance
to map language queries to a specific object class. The 2D maps, though sufficient for
a good range of tasks, limit performance when larger ones can obscure smaller objects.

Building upon [1], we introduce a novel approach for Semantic Instance Maps. Our
work introduces Open-set 3D Semantic Instance Maps (O3D-SIM ), addressing
the limitation of traditional closed-set methods [7, 8], which assume only predefined set
objects will be encountered during operation. In contrast, O3D-SIM leverages meth-
ods to identify and potentially categorize unseen objects not explicitly included in the
training data. This is crucial for scenarios with diverse and unseen objects. This en-
ables better performance and complex query handling for unseen object categories. We
address the previously mentioned limitations by enabling instance-level object identifi-
cation within the spatial representation and operating in an open-set manner, excelling
in real-world scenarios. We have achieved major improvements over our previous work,
which operated in a closed-set manner. The current pipeline leverages state-of-the-art
foundational models like CLIP [9] and DINO [10]. These models extract semantic fea-
tures from images, allowing them to recognize objects and understand the finer details
and relationships between them. For example, the DINOv2 [10] model, trained on
various chair images, can identify a chair in a new image and distinguish between a
dining chair and an office chair.

This paper details the proposed pipeline for creating the 3D map and evaluates
its effectiveness in VLN tasks for both simulation and real-world data. Experimental
evaluations demonstrate the improvements achieved through our open-set approach,
with an increase in correctly identified object instances, bringing our results closer
to ground truth values even in challenging real-world data. Additionally, our pipeline
achieves a higher success rate for complex language navigation queries targeting spe-
cific object instances, including those unseen during training, such as mannequins or
bottles.

The contributions of our work can be summarized as follows:

(1) Extending the closed-set 2D instance-level approach from our previous work [1]
to an open-set 3D Semantic Instance Map using state-of-the-art image segmen-
tation, open-set image-language-aligned embeddings, and hierarchical clustering
in 3D. The resulting map consists of a 3D point cloud with instance-level em-
beddings, enhancing the semantic understanding.

(2) Validating the effectiveness of the 3D map approach to VLN tasks through both
qualitative and quantitative experiments.

The remainder of this paper is organized as follows. Section 2 reviews and analyzes
recent literature, providing the necessary background on semantic scene understand-
ing, 3D scene reconstruction, and VLN to the reader. Section 3 outlines the methodol-
ogy behind our proposed 3D map. Section 4 discusses the experimental evaluation of
our proposed 3D map’s effectiveness in achieving complex language queries as shown
in Figure 1. Finally, concluding remarks and directions for future work are presented
in Section 5.
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Figure 1. We carry out complex instance-specific goal navigation in object-rich environments. These language
queries refer to individual instances based on spatial and viewpoint configuration concerning other objects of

the same type while preserving the navigation performance on standard language queries.

2. Related Works

2.1. Vision-and-Language Navigation:

Vision-and-Language Navigation (VLN) has recently gained much traction because
of its potential to improve autonomous navigation by combining human natural lan-
guage understanding and visual perception [2, 6, 11, 12]. The development of foun-
dation models like CLIP [9], which combines image and text data to learn the rich
representations of the environment, has spurred considerable progress in vision and
language understanding. The multi-modal nature of these foundation models allows
them to comprehend concepts in both text and image and even connect concepts be-
tween the two modalities. There have been increasing advancements to address the
gaps faced by previous methods for VLN, like navigation efficiency to spatial goals
specified by language commands and zero-shot spatial goal navigation given unseen
language instructions [2].

A major challenge in VLN is interpreting language instructions in unfamiliar envi-
ronments. A significant limitation of previous studies in this domain is their handling
of action errors. Suppose a robot agent makes an incorrect action. In that case, it risks
failing to reach its destination or exploring unnecessary areas, leading to increased com-
putational demands and possibly entering a state from which recovery is unfeasible.
State-of-the-art VLN methodologies employ diverse strategies to excel in such scenar-
ios. Some methods adopt a specialized pre-training and fine-tuning approach designed
explicitly for VLN tasks, utilizing transformer-based architectures [13]. These strate-
gies often involve using image-text-action triplets in a self-supervised learning con-
text [14]. Other approaches refine the pre-training process to enhance VLN task per-
formance, for instance, by emphasizing the learning of spatiotemporal visual-textual
relationships to better utilize past observations for future action prediction [15, 16, 17].

In this work, we also address some of the limitations observed in existing end-to-end
VLN methods, such as those detailed in Qi et al. [18], Huo et al. [19], and Hong et
al. [20]. These approaches rely on direct action estimation from multimodal inputs
without constructing an environmental map, necessitating highly specific navigational
instructions, which can feel unnatural and rigid in real-world settings. Furthermore,
these methods modify BERT [21] architectures to parse language commands, thus
missing out on the broader contextual understanding offered by newer larger language
models (LLMs) like GPT 3.5. These models also tend to process multiple RGB images
per timestep to determine actions, leading to higher computational demands during
inference. In contrast, our method integrates environmental mapping, which enhances
the system’s spatial understanding and allows for more context-aware navigation.

Furthermore, contemporary VLN systems predominantly rely on simulations due
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to their dependency on panoramic views and extracting region features, which can
be computationally prohibitive. In contrast, our work demonstrates our pipeline’s ef-
ficiency and computational viability with real-world data, underscoring its practical
applicability.

Given the recent advances in the semantic understanding of images, there has been
an increasing interest in using semantic reasoning to improve exploration efficiency in
novel environments and handling semantic goals specified via categories, images, and
language instructions. Most of these methods are specialized to a single task, i.e. they
are uni-modal.

Recent works have also been on executing tasks with lifelong learning, which means
taking advantage of experience in the same environment for multi-modal naviga-
tion [11]. One such task is that a robot must be able to reach any object specified
in any way and remember object locations to return to them. The work done on
these tasks also utilizes CLIP to align both image and language embeddings, where
they match language goal descriptions with all instances in the environment using the
cosine similarity score between their CLIP features.

Other approaches to VLN, such as [1, 2, 4, 22], involve building a map of the
environment along with the semantic understanding and utilising this global-level rep-
resentation to achieve multimodal tasks. These works have shown that understanding
the environment on a global scale helps achieve VLN tasks easily and saves the agent
from unnecessary explorations that may occur due to wrong future-action predictions.
Our approach falls under the same category.

2.2. Semantic Scene Understanding and Instance Segmentation

Our work builds upon recent advancements in semantic and instance segmentation
of 3D scenes. This domain has been thoroughly explored using closed-set vocabulary
methods, including our prior work [1], which utilizes Mask2Former [7] for image seg-
mentation. Various studies [23, 24, 25] have adopted a similar approach to achieve
object segmentation, resulting in a closed-set framework. While these methods are
effective, they are constrained by the limitation of predefined object categories. Our
approach employs SAM [26] to acquire segmentation masks for open-set detection.
Moreover, our methodology, distinct from many existing techniques that depend heav-
ily on extensive pre-training or fine-tuning, integrates these models to forge a more
comprehensive and adaptable 3D scene representation. This emphasizes enhanced se-
mantic understanding and spatial awareness.

To improve the semantic understanding of the objects detected within our images,
we harness detailed feature representations using two foundational models: CLIP [9]
and DINOv2 [10]. DINOv2, a Vision Transformer trained through self-supervision,
recognises pixel-level correspondences between images and captures spatial hierar-
chies. Compared to CLIP, DINOv2 more effectively distinguishes between two distinct
instances of the same object type, which poses challenges for CLIP.

It’s crucial to differentiate individual instances following the semantic identifica-
tion of objects. Early methods employed a Region Proposal Network (RPN) to pre-
dict bounding boxes for these instances [27]. Alternatively, some strategies suggest a
generalized architecture for managing panoptic segmentation [28]. In our preceding
approach, we utilized the segmentation model Mask2Former [7], which employs an
attention mechanism to isolate object-centric features. Recent research also tackles
semantic scene understanding using open vocabularies [29], utilizing multi-view fusion
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and 3D convolutions to derive dense features from an open-vocabulary embedding
space for precise semantic segmentation. Our current pipeline leverages Grounding
DINO [30] to generate bounding boxes, which are then input into the Segment Any-
thing Model (SAM) [26] to produce individual object masks, thus enabling instance
segmentation within the scene.

2.3. 3D Scene Reconstruction

In recent times, 3D scene reconstruction has seen significant advancements. Some re-
cent works in this field include using a self-supervised approach for Semantic Geometry
completion and appearance reconstruction from RGB-D scans such as [31], which uses
3D encoder-decoder architecture for geometry and colour. For these approaches, the
focus is on generating semantic reconstruction without ground truth. Another ap-
proach is to integrate real-time 3D reconstruction with SLAM. This is done through
keyframe-based techniques and has been used in recent autonomous navigation and
AR use cases[32]. Another recent method has seen work on Neural Radiance Fields[33]
for indoor spaces when utilizing structure-from-motion to understand camera-captured
scenes. These NeRF models are trained for each location and are particularly good
for spatial understanding. Another method is to build 3D scene graphs using open
vocabulary and foundational models like CLIP to capture semantic relationships be-
tween objects and their visual representations[4]. During reconstruction, they use the
features extracted from the 3D point clouds and project them onto the embedding
space learned by CLIP.

This work uses an open-set 2D instance segmentation method, as explained in the
previous sections. Given an RGB-D image, we get these individual object masks from
the RGB image and back-project them to 3D using the Depth image. Here, we have
an instance-based approach instead of having a point-by-point computation to re-
construct, which was previously done by Concept-Fusion [22]. This per-object feature
mask extraction also helps us compute embeddings, which preserve the open-set nature
of this pipeline.

3. Methodology

In this section, we discuss the pipeline of our Vision-Language Navigation (VLN)
method, which employs O3D-SIM. We begin with an overview of our proposed pipeline
and then present an in-depth analysis of its constituent steps. The initial phase of
our methodology involves data collection, consisting of a set of RGB-D images and
extrinsic and intrinsic camera parameters, which are outlined first. Subsequently, we
move to creating the Open-set 3D Semantic Instance Map. This process is divided into
two main stages: initially, we extract open-set semantic instance information from the
images; following this, we utilize the gathered open-set information to organize the
3D point cloud into an open-set 3D semantic instance map. The final part of our
discussion focuses on the VLN module, where we talk about its implementation and
functionality.

The pipeline of the O3D-SIM creation is depicted in Figure 2. The first step of the
creation of the O3D-SIM, presented in Section 3.2, is the extraction of the open-set
semantic instance information from the RGB sequence of input images. This informa-
tion includes, for each object instance, the mask information and the semantic features
represented by the CLIP [9] and DINO [10] embedding features. The second step, pre-
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Figure 2. An overview of the proposed 3D mapping pipeline. Labels generated by the RAM model are input

into Grounding DINO to generate bounding boxes for the detected labels. Subsequently, instance masks are

created using the SAM model, while CLIP and DINOv2 embeddings are extracted in parallel. These masks,
along with the semantic embeddings, are back-projected into 3D space to identify 3D instances. These instances

are then refined using a density-based clustering algorithm to produce the O3D-SIM. Figure3 shows how the

object instance clustering works as part of O3D-SIM.

sented in Section 3.3, uses this open-set semantic instance information to cluster the
input 3D point cloud into an open-set semantic 3D objects map, see Figures 2 and 3.
The operation is improved incrementally by applying the sequence of RGB-D images
over time.

3.1. Data Collection

Creating the O3D-SIM begins by capturing a sequence of RGB-D images using a posed
camera, with an estimate of the extrinsic and intrinsic parameters of the environment
to be mapped. The pose information associated with each image is used to transform
the point clouds to a world coordinate frame. For simulations, we use the ground-
truth pose associated with each image, whereas we leverage RTAB-Map[34] with G2O
optimization [35] in the real world to generate these poses.

3.2. Open-set Semantic Information from Images

The sequence of RGB-D images collected above is the input at this stage. Using the n
RGB-D images I = {I1, ..., In}, a set of object instances are extracted after processing
every image in I. Each image Ii provides us with a set Oi = {Oi1, ..., Oij , ..., OiJi

}
of object instances, where Ji is the maximum of instances from the ith image. An
object instance is represented using a mask and semantic features, i.e. CLIP [9] and
DINO [10] embeddings. The flow diagram of the process of extracting the open-set
semantic representation and the structure used to store the information are depicted
in Figure 2.
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3.2.1. Open-set Semantic and Instance Masks Detection

The recently released Segment Anything model (SAM) [26] has gained significant
popularity among researchers and industrial practitioners due to its cutting-edge seg-
mentation capabilities. However, SAM tends to produce an excessive number of seg-
mentation masks for the same object. We adopt the Grounded-SAM [36] model for
our methodology to address this. This process involves generating a set of masks in
three stages, as depicted in Figure 2. Initially, a set of text labels is created using the
Recognizing Anything model (RAM) [37]. Subsequently, bounding boxes correspond-
ing to these labels are created using the Grounding DINO model [30]. The image and
the bounding boxes are then input into SAM to generate class-agnostic segmenta-
tion masks for the objects seen in the image. We provide a detailed explanation of
this approach below, which effectively mitigates the problem of over-segmentation by
incorporating semantic insights from RAM and Grounding-DINO.

The RAM model) [37] processes the input RGB image to produce semantic labelling
of the object detected in the image. It is a robust foundational model for image tagging,
showcasing remarkable zero-shot capability in accurately identifying various common
categories. The output of this model associates every input image with a set of labels
that describe the object categories in the image. The process begins with accessing the
input image and converting it to the RGB colour space, then resized to fit the model’s
input requirements, and finally transforming it into a tensor, making it compatible
with the analysis by the model. Following this, the RAM model generates labels, or
tags, that describe the various objects or features present within the image. A filtra-
tion process is employed to refine the generated labels, which involves the removal of
unwanted classes from these labels. Specifically, irrelevant tags such as ”wall”, ”floor”,
”ceiling”, and ”office” are discarded, along with other predefined classes deemed unnec-
essary for the context of the study. Additionally, this stage allows for the augmentation
of the label set with any required classes not initially detected by the RAM model.
Finally, all pertinent information is aggregated into a structured format. Specifically,
each image is catalogued within the img dict dictionary, which records the image’s
path alongside the set of generated labels, thus ensuring an accessible repository of
data for subsequent analysis.

Following the tagging of the input image with generated labels, the workflow pro-
gresses by invoking the Grounding DINO model [30]. This model specializes in ground-
ing textual phrases to specific regions within an image, effectively delineating target
objects with bounding boxes. This process identifies and spatially localizes objects
within the image, laying the groundwork for more granular analyses. After identifying
and localising objects via bounding boxes, the Segment Anything Model (SAM) [26]
is employed. The SAM model’s primary function is to generate segmentation masks
for the objects within these bounding boxes. By doing so, SAM isolates individual
objects, enabling a more detailed and object-specific analysis by effectively separating
the objects from their background and each other within the image.

At this point, instances of objects have been identified, localized, and isolated.
Each object is identified with various details, including the bounding box coordinates,
a descriptive term for the object, the likelihood or confidence score of the object’s
existence expressed in logits, and the segmentation mask. Furthermore, every object is
associated with CLIP and DINOv2 embedding features, details of which are elaborated
in the following subsection.

7



3.2.2. The Semantic Embedding Extraction

To improve our comprehension of the semantic aspects of object instances that have
been segmented and masked within our images, we employ two models, CLIP [9] and
DINOv2 [10], to derive the feature representations from the cropped images of each ob-
ject. A model trained exclusively with CLIP achieves a robust semantic understanding
of images but cannot discern depth and intricate details within those images. On the
other hand, DINOv2 demonstrates superior performance in depth perception and ex-
cels at identifying nuanced pixel-level relationships across images. As a self-supervised
Vision Transformer, DINOv2 can extract nuanced feature details without relying on
annotated data, making it particularly effective at identifying spatial relationships and
hierarchies within images. For instance, while the CLIP model might struggle to dif-
ferentiate between two chairs of different colours, such as red and green, DINOv2’s
capabilities allow such distinctions to be made clearly. To conclude, these models cap-
ture both the semantic and visual features of the objects, which are later used for
similarity comparisons in the 3D space.

A set of pre-processing steps is implemented for processing images with the DINOv2
model. These include resizing, centre cropping, converting the image to a tensor, and
normalizing the cropped images delineated by the bounding boxes. The processed im-
age is then fed into the DINOv2 model alongside labels identified by the RAM model to
generate the DINOv2 embedding features. On the other hand, when dealing with the
CLIP model, the pre-processing step involves transforming the cropped image into
a tensor format compatible with CLIP, followed by the computation of embedding
features. These embeddings are critical as they encapsulate the objects’ visual and
semantic attributes, which are crucial for a comprehensive understanding of the ob-
jects in the scene. These embeddings undergo normalization based on their L2 norm,
which adjusts the feature vector to a standardized unit length. This normalization
step enables consistent and fair comparisons across different images.

In the implementation phase of this stage, we iterate over each image within our
data and execute the subsequent procedures:

(1) The image is cropped to the region of interest using the bounding box coordi-
nates provided by the Grounding DINO model, isolating the object for detailed
analysis.

(2) Generate DINOv2 and CLIP embeddings for the cropped image.
(3) Finally, the embeddings are stored back along with the masks from the previous

section.

With these steps completed, we now possess detailed feature representations for
each object, enriching our dataset for further analysis and application.

3.3. Creating the Open-set 3D Representation

To complete building the O3D-SIM, we now build upon the feature embeddings ex-
tracted for each object by projecting object information to 3D space, clustering, and
associating objects across multiple images to create a comprehensive 3D scene repre-
sentation. The process of projecting the semantic information into the 3D space and
refining the map is depicted in Figure 3.
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Figure 3. Clustering in 3D of object instances using semantic embeddings and volumetric overlap. Semantic

similarity is verified using CLIP and DINOv2 embeddings. Volumetric overlap is calculated using 3D bound-

ing boxes and overlap matrices. The above figure shows the clustering process between two camera poses,
represented by the coloured frustum, and the corresponding object point clouds are the same colour. For the

O3D-SIM pipeline, this process is repeated for each camera pose, and the objects from each frame are either

merged into an existing instance or added as a new instance into the incrementally built representation. The
first example shows a positive case of merging, where a comparison is made for the same instance of a chair

from different poses. The chairs are merged into a single instance due to success in both semantic similarity and

volumetric overlap. The second example shows a case where the table (red) and the skateboard (blue), being
very close to each other, have a volumetric overlap but are not merged due to a failure in semantic similarity,

creating 2 different object instances. Example 3 shows an example of two separate chairs near each other. Since

they are 2 different chairs, they fail to have a volumetric overlap, creating 2 separate instances.
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3.3.1. The O3D-SIM Intialization

The 3D map is initially created using a selected image, which acts as the reference
frame for initialising our scene representation. This step establishes the foundational
structure of our 3D scene, which is then progressively augmented with data from
subsequent images to enrich the scene’s complexity and detail.

The data for objects within a 3D scene are organized as nodes within a dictionary,
which initially starts as empty. Objects are then identified from the initial image along
with the related data that encompasses embedding features and information on their
masks. For each object discerned in the image, a 3D point cloud is created using the
available depth information and the object’s mask. This point cloud formation involves
mapping the 2D pixels into 3D space, facilitated by the camera’s intrinsic parameters
and depth values. Subsequently, the camera pose is utilized to align the point cloud
accurately within the global coordinate system. To refine our scene representation,
background filtering removes elements identified as background, such as walls or floors.
These elements are excluded from further processing, particularly in the clustering
stage, as they do not constitute the main focus of our scene representation.

The set of object’s point clouds is processed further using DBSCAN[38] clustering
for representation refinement. The point cloud is downsampled via voxel grid filtering
to reduce the number of points and the computational complexity while preserving
the data spatial structure manageable.

DBSCAN groups the points that are closely packed together while labelling points
that lie alone in low-density regions as noise. In a post-clustering step, the largest
cluster typically corresponds to the main object of interest within the point cloud is
identified. This helps filter out the noise and irrelevant points, producing a cleaner
representation of the object of interest.

The pose of an object in 3D space is determined by calculating the orientation of
a bounding box, which offers a concise spatial representation of the object’s location
and size in 3D space. Subsequently, the 3D map output is initialized with an initial
set of nodes, encapsulating feature embeddings, point cloud data, bounding boxes,
and the count of points in the point cloud associated with each node. Each node also
includes source information to facilitate tracing data origins and the linkage between
nodes and their 2D image counterparts.

3.3.2. Incremental Update of the O3D-SIM

After initializing the scene, we update the representation with data from new images.
This process ensures our 3D scene stays current and precise as additional information
becomes available. It iterates over each image in the image sequence; for each new
image, multi-object data is extracted, and the scene is updated.

Objects are detected for each new image, and new nodes are created like the initial
image. These temporary nodes contain the 3D data for newly detected objects that
must either be merged into the existing scene or added as new nodes. The similarity
between newly detected and existing scene nodes is determined by combining visual
similarity, derived from feature embeddings, and spatial similarity, obtained from point
cloud overlap, to formulate an aggregate similarity measure. If this measure surpasses
a predetermined threshold, the new detection is deemed to correspond to an existing
object in the scene. Indeed, the newly detected node is either merged with an existing
scene node or added as a new node.

The volumetric overlap of two point clouds is defined as the proportion of points
in point cloud pti that have nearest neighbours in point cloud ptj , within a distance
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threshold δnn. The metric can be mathematically expressed as:

Volumetric overlap = nnratio(pti, ptj) =
1

|pti|
∑
p∈pti

1(min
q∈ptj

∥p− q∥ ≤ δnn) (1)

where 1 is the indicator function that is 1 if the condition is true and 0 otherwise, p
and q are points in point clouds pti and ptj , respectively, and ∥p− q∥ is the Euclidean
distance between points p and q.

The semantic similarity between two point clouds is calculated using the cosine
similarity between the DINO features of the image masks used to create the point
clouds. This similarity is scaled to be between 0 and 1. It can be formulated as:

Semantic Similarity =
1

2

(
1 +

fpti · fptj
∥fpti∥∥fptj∥

)
(2)

where fpti and fptj are the DINO feature vectors of the image masks corresponding to
point clouds pti and ptj , respectively, · denotes the dot product, and ∥ · ∥ represents
the norm of the vector.

Merging involves the integration of point clouds and the averaging of feature embed-
dings. A weighted average of CLIP and DINO embeddings is calculated, considering
the contribution from the source key information, with a preference for nodes with
more source identifiers. If a new node needs to be added, it is incorporated into the
scene dictionary.

Scene refinement occurs once objects from all images in the input sequence have
been added. This process consolidates nodes that represent the same physical objects
but were initially identified as separate due to occlusions, viewpoint changes, or similar
factors. It employs an overlap matrix to identify nodes that share spatial occupancy
and logically merges them into a single node. The scene is finalized by discarding nodes
that fail to meet the minimum number of points or detection criteria. This results in a
refined and optimized final scene representation - OpenSet 3D Semantic Instance
Maps, a.k.a., O3D-SIM.

3.4. Language-Guided Navigation

In this section, we leverage the LLM-based approach from [1], which uses ChatGPT
3.5 [39] to understand and map language commands to pre-defined function primitives
that the robot can understand and execute. We have utilized the ChatGPT 3.5 API
for our project due to its user-friendly interface and to have an accurate and fair
comparison with SI Maps [1], as it also uses ChatGPT. It’s noteworthy that other
large language models (LLMs), such as LLAMA [40], can achieve comparable results
when provided with appropriate context for this process..

However, there are a few differences between our current approach and the ap-
proach in [1] regarding the use case of the LLM and the implementation of our func-
tion primitives. The previous approach used the LLM’s ability to bring in an open-set
understanding by mapping general queries to the already-known closed-set class la-
bels obtained via Mask2Former [7]. However, given the open-set nature of our new
representation, O3D-SIM, the LLM does not need to do that. Figure 4 shows both
approaches’ code output differences. The function primitives work similarly to the
older approach, requiring the desired object type and its instance as an input. But
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Figure 4. This figure shows the difference in output from ChatGPT due to the difference in nature of the two

mapping approaches, where SI-Maps is closed-set, and O3D-SIM is open-set. For queries specifying exact object

classes, both approaches output the same code. But, for queries specified in an open-set manner, the newer
approach describes the goal to the code, whereas the older approach maps the description to the pre-known

classes and passes this class to the code. The older approach benefits from LLM’s understanding, whereas the

newer approach benefits from the open-set embeddings (CLIP)

now, the desired object is not from a pre-defined set of classes but a small query
defining the object, so the implementation to find the desired location changes. We
use the text and image-aligned nature of CLIP embeddings to find the desired object,
where the input description is passed to the model, and its corresponding embedding
is used to find the object in O3D-SIM. A cosine similarity is calculated between the
embedding of the description and all the embeddings of our representation. These are
ranked in an order based on the input query, and the desired instance is selected. This
helps localise the required object instance from the language query.

Once the object and the desired instance have been localised using the language
command, a goal point is generated so the robot can perform autonomous navigation
towards this object. We create a top-down occupancy grid map from the point cloud
generated from RGB-D data and poses. Since the object is represented as a point
cloud, we have multiple points for a single instance; hence, we calculate the object’s
centroid. The obstacles in the occupancy map are inflated by the robot’s radius, and
reachable free space is marked in this inflated map using Breadth-First Search (BFS).
Finally, the object centroid is projected onto the grid map, and the closest reachable
free grid cell to the centroid is returned to the robot as the goal point for autonomous
navigation (Figure 5), therefore achieving Language-Guided Navigation.

4. Experiments

Having introduced the O3D-SIM creation pipeline and its integration with ChatGPT
for natural language understanding and Vision-Language Navigation (VLN) enhance-
ment, we now turn to the evaluation of this novel representation both quantitatively
and qualitatively. This will also shed light on the impact of the O3D-SIM represen-
tation on an agent’s ability to execute queries that mimic human interaction. Figure
1 shows a few examples of such queries. The evaluation is structured into two sub-
sections: Section 4.2 focuses on the quantitative assessment of O3D-SIM, and Section
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Figure 5. This figure shows the process of generating a goal point once the target object has been localised

based on a sample language query and O3D-SIM.

4.3 addresses the qualitative analysis of the representation. The section 4.1 details our
hardware configurations for creating and testing the maps during real-world experi-
ments.

4.1. Hardware Setup

Creation of O3D-SIM is an offline pipeline and leverages large foundational models
that require a good amount of GPU VRAM. Hence, we use a server setup with a 16
GB Nvidia RTX A4000, 64 GB RAM and an AMD Ryzen 7 3800X 8-core processor to
create the maps. For collecting data in the real world and testing out the navigation
performance, we use a custom robot we have built in our lab, which provides wheel
odometry using encoders, planar lidar scans using an RPLiDAR sensor and RGB-D
data using a Kinect Azure Camera. For inference on the robot, we use a laptop with a 6
GB Nvidia RTX 3060, 32 GB RAM and an AMD Ryzen 7 5800H 8-core processor. We
load O3D-SIM on the laptop and integrate it with the ROS Navigation Stack, where
the goal is generated from language commands and passed to the mobile robot (section
3.4). We do not require the GPU on the laptop to infer from the CLIP model and
O3D-SIM, and the object localisation using O3D-SIM and CLIP and the corresponding
goal point generation happens in about a second. The inference time for the language
query to code generation depends on the response time of the LLM’s API. It took an
average time of about 45-60 seconds with ChatGPT 3.5 for our experiments, which is
consistent with the time reported in other works.

4.2. Quantitative Evaluation

To facilitate the construction of O3D-SIM and its quantitative evaluation, we employ
the Matterport3D dataset [41] within the Habitat simulator [42]. Matterport3D, a com-
prehensive RGB-D dataset, encompasses 10,800 panoramic views derived from 194,400
RGB-D images across 90 large-scale buildings. It offers surface reconstructions, camera
poses, and 2D and 3D semantic segmentations — critical components for creating ac-
curate Ground-truth models. Both Matterport3D and Habitat are widely utilized for
assessing the navigational abilities of VLN agents in indoor settings, enabling robots
to execute navigational tasks dictated by natural language commands in a seamless
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Method Success Rate

Human Evaluation Automatic Evaluation

VL Maps 0.40 0.46

VL Maps with CC 0.48 0.52

SI Maps (K=5) 0.70 0.74

SI Maps (K=9) 0.72 0.74

O3D-SIM 0.82 0.84

Table 1. O3D-SIM outperforms the baseline methods from [1] by significantly large margins on the Success

Rate metric. It also shows an improvement from our previous approach, i.e., SI-Maps. The best results are
highlighted in bold. For this evaluation, the agent executes a set of open-set and closed-set queries in 5 different

scenes from Matterport3D and 1 real world environment.

environment, with performance meticulously documented. To evaluate O3D-SIM, we
compiled 5,267 RGB-D frames and their respective pose data from five distinct scenes,
applying this dataset across all mapping pipelines included in our assessment. We also
gathered real-world environment data for evaluation purposes, expanding our analysis
to encompass six unique scenes.

Baseline: We evaluate the performance of the O3D-SIM against the logical baseline
used in our previous work, VLMaps with Connected Components, and also evaluate
against our approach SI Maps from [1]. The three methods mentioned for comparison
are chosen as they try to achieve things similar to our approach.

Evaluation Metrics: Like prior approaches [2, 43, 44] in VLN literature, we use
the gold standard Success Rate metric, also known as Task Completion metric to
measure the success ratio for the navigation task. We choose Success Rate on naviga-
tion tasks as they directly quantify the overall approach and indirectly quantify the
performance of O3D-SIM in detecting the instances because if the instances along the
way are not properly detected, the queries are bound to fail. We compute the Success
Rate metric through human and automatic evaluations. For automatic evaluation, we
define success if the agent reaches within a threshold distance of the ground truth goal.
Here, the agent’s orientation concerning the goal(s) doesn’t matter and might show
success even when the agent fails. For example, if there are multiple paintings and the
agent is asked to point to a particular painting at the end of a query, the agent may
reach with a close distance of the desired painting but end up looking at something
undesired. Hence, we also use human evaluation to verify if the agent ends up in a
desired position according to the query. Human Verification takes in votes from the
three people and decides, based on these votes, the success of a task.

Results: We present the results of the evaluation metric Success Rate in Table 1. In
our experimentation, we observe a remarkable improvement in performance compared
to the other approaches we have shown in our paper, especially against the baselines
from [1]. O3D-SIM performs better than VLMaps with CC due to its ability to identify
instances robustly. SI Maps and O3D-SIM perform better than the baselines due to
their ability to separate instances. However, O3D-SIM has the edge over SI Maps
due to its open set and 3D nature, allowing it to understand the surroundings better.
Figure 6 shows a few language queries we tested in our lab using all four representations
- VLMaps, VLMaps CC, SI Maps and O3D-SIM.
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Figure 6. The figure shows the success/failure of the four representations in our lab environment for a few
open/closed-set queries.

4.3. Qualitative Results

To qualitatively demonstrate the effectiveness of the proposed O3D-SIM, this sec-
tion includes visualizations of the model’s performance using select examples. These
visualizations are displayed in Figure 7, illustrating the outcomes for two mapping
sequences.

Notably, the open-set capability of O3D-SIM enables the identification of objects
that are typically undetectable by conventional pipelines relying on closed sets or
predefined datasets, such as wheelchairs. The figure showcases a comparative analysis
of our pipeline’s ability to accurately identify and segment various objects, including
mannequins and mobile robots, against their actual counts. This comparison highlights
situations where traditional methods, constrained by a limited set of recognizable
objects, fall short.

Our approach recognises instance-level semantics, accurately identifying 5 out of 6
table instances (with one false positive), underscoring its precision across both simu-
lated and real-world data. This demonstrates the robustness of our pipeline, further
evidenced by the clarity of the semantic map and the ease with which instance-level
segmentation results can be visualized. While methods like VLMaps might identify
a broader range of objects due to their open-set nature, and SI-Maps may detect
multiple instances of the same object, O3D-SIM uniquely excels at both, offering a
comprehensive solution.

5. Conclusion and Future Work

In conclusion, we introduce O3D-SIM, an innovative approach to scene representation
that builds on the concepts established in our previous work, SI-Maps. We demon-
strated that an instance-level understanding of an environment enhances performance
in language-guided tasks. O3D-SIM advances the 2D closed-set approach of SI-Maps to
an open-set 3D representation. When combined with a Large Language Model (LLM)
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Figure 7. This figure presents the qualitative results for O3D-SIM. Mapping sequence 1 was recorded using
a Kinect Azure on a mobile robot, whereas mapping sequence 2 was recorded using an iPad, both in the real
world. The environment was changed between the two sequences. The first four queries show some unique

objects identified by O3D-SIM that normal closed-set approaches may fail to identify.
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to incorporate natural language understanding, O3D-SIM significantly improves the
success rate of executing natural language queries. This advancement suggests that
representations akin to O3D-SIM could enable robots to approach the comprehension
and execution of natural language commands nearly as effectively as humans.

A promising avenue for future development involves integrating dynamic objects
into O3D-SIM. Although it currently identifies static objects, equipping the pipeline
to recognize humans and other dynamic entities would enable handling more complex
queries, bringing them closer to human levels of understanding. Such an enhancement
would be invaluable in various settings, including hospitals and household robotics, or
any context where human-robot collaboration is crucial. Another intriguing avenue for
exploration is the integration of 3D instance-level scene representations, such as O3D-
SIM, with physics engines to transform real-life environments into life-like simulations,
akin to Nvidia Isaac Gym [45]. Given O3D-SIM’s capability to distinguish between
objects at an instance level, these simulations could be dynamically modified as needed
without the necessity of re-recording the entire scene. This flexibility allows for creating
varied iterations of the same life-like environment.
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