
CrowdSurfer: Sampling Optimization Augmented with
Vector-Quantized Variational AutoEncoder for Dense Crowd Navigation

Naman Kumar*1, Antareep Singha*1, Laksh Nanwani*1, Dhruv Potdar1, Tarun R1, Fatemeh Rastgar2,
Simon Idoko2, Arun Kumar Singh2, K. Madhava Krishna1

Fig. 1: The proposed method, CrowdSurfer, first generates a diverse set of samples using the VQ-VAE + PixelCNN
pipeline, followed by inference time optimization via the PRIEST planner [1], resulting in trajectories that can traverse
complex dynamic navigation scenarios successfully. From left to right we show HuskyA200, our Autonomous Wheelchair,
and a simulated turtlebot navigating in crowded environments using CrowdSurfer.

Abstract— Navigation amongst densely packed crowds re-
mains a challenge for mobile robots. The complexity increases
further if the environment layout changes making the prior
computed global plan infeasible. In this paper, we show that
it is possible to dramatically enhance crowd navigation by just
improving the local planner. Our approach combines gener-
ative modelling with inference time optimization to generate
sophisticated long-horizon local plans at interactive rates. More
specifically, we train a Vector Quantized Variational AutoEn-
coder to learn a prior over the expert trajectory distribution
conditioned on the perception input. At run-time, this is used
as an initialization for a sampling-based optimizer for further
refinement. Our approach does not require any sophisticated
prediction of dynamic obstacles and yet provides state-of-the-
art performance. In particular, we compare against the recent
DRL-VO approach [2] and show a 40% improvement in success
rate and a 6% improvement in travel time.

I. INTRODUCTION

Reliable, collision-free navigation in complex environ-
ments filled with human crowds is essential for deploying
mobile robots in hospitals, offices, airports, etc [3], [4]. While
this is a well-studied problem, one understated aspect of
existing works is the reliance on a global plan computed
based on prior maps. Put differently, existing planners show
poor performance in the absence of a global plan or when
it is rendered infeasible due to changes in the environment
[1], [5].

* denotes equal contribution
1 are with RRC, IIIT Hyderabad, India.
2 are with University of Tartu, Estonia
Emails: (namanxkumar, antareepsinha12, lakshanshul, dhruvpotdar29,

tarun.ramak)@gmail.com,(fatemeh.rastagar,simon.idoko)@ut.ee,
aks1812@gmail.com, mkrishna@iiit.ac.in.

Project Page-https://smart-wheelchair-rrc.github.io/CrowdSurfer-webpage
Code-https://github.com/Smart-Wheelchair-RRC/CrowdSurfer

The presence of dense human crowds further necessitates
complex on-the-fly decision-making as prior plans are of
little use in this context. Existing works have tried to heavily
leverage both imitation [6] and reinforcement learning (RL)
[7], [8], [9] for navigation amongst dense crowds. The latter
is particularly attractive since it not only gets rid of the
necessity of obtaining expert demonstration but can also
implicitly account for the interaction between the robot and
the crowd. However, it is worth pointing out that only very
few works like [2] have shown navigation amongst dense
crowds in indoor environments with very tight spaces.

This paper shows that we can dramatically improve navi-
gation in crowded tight spaces by just making the local plan-
ner more capable. In particular, a local planner capable of
long-horizon planning at interactive rates can deliver strong
performance even in the absence of any complex trajectory
or interaction prediction of human crowds. To this end, our
key contribution in this paper is the development of a local
planner that combines generative modeling with inference-
time optimization. Specifically, we use Vector Quantized
Variational AutoEncoder (VQ-VAE) [10], to learn a discrete
prior over the space of expert demonstrations. The discrete
latent space is particularly suitable for capturing the inherent
multi-modality of the expert demonstrations. We also train
a PixelCNN [11] to sample from the learned priors and
generate a distribution of trajectories during inference time,
conditioned on the perception input.

We also perform inference time optimizations to ensure
that the PixelCNN-generated trajectories exactly satisfy kine-
matic and collision constraints. This is achieved by using
the learned posterior distribution as an initialization for a
sampling-based trajectory optimizer built on top of our prior

https://smart-wheelchair-rrc.github.io/CrowdSurfer-webpage
https://github.com/Smart-Wheelchair-RRC/CrowdSurfer

work [1]. A unique aspect of [1] is that it uses a combination
of convex optimization and gradient-free search to search
across different potential homotopies for collision avoidance.

Although conceptually simple, our approach shows strong
performance in various open-source benchmark environ-
ments augmented with human crowds controlled by the
social-force model [12]. We specifically compare against
DRL-VO [2] that combines RL with velocity-obstacle [13]
based reactive collision avoidance. We achieve 40% and 6%
improvement over DRL-VO in success rate and travel time
respectively.

II. RELATED WORKS

Autonomous navigation capabilities still lack repeatability
and robustness, especially in cluttered environments packed
with dense crowds. Nevertheless, this problem has been well
studied and we review the prominent works in this direction
and contrast our approach with them.
Model-Based Planning: This class of planners is based
on classical graph/sampling-based search, mathematical op-
timization, or a combination of both. Two such approaches
that still form the backbone of autonomous navigation in
both research and industry are Dynamic Window Approach
(DWA) [14] and Timed Elastic Bands (TEB) [15]. In our
recent paper [1], we showed that these two approaches
substantially outperform even some recent approaches like
Model Predictive Path Integral [16] and its variants like Log-
MPPI [17]. A similar observation was also put forward in
[5]. An important caveat in model-based planning is the
requirement of a global planner, which in turn requires a prior
map of the environments. In the absence of a global plan, all
existing approaches show massive performance deterioration,
even in the absence of dynamic obstacles [5], [1].
Learning-Based Approaches: Over the last decade, there
has been a strong interest in applying RL to crowd navigation
[7], [8], [9], [18]. These works rely on implicitly or explicitly
modeling the interaction between the crowd and the robot
and that between members of the crowd themselves. How-
ever, most RL approaches show results in spaces where the
robot just needs to deal with the dynamic crowd. Recently,
[2] has shown impressive performance in environments that
resemble real-world settings that are highly cluttered as
well as have tens of dynamic human obstacles. One critical
drawback of purely learning-based approaches is that they
typically struggle when encountered with novel scenarios.
As we show later, even the performance of [2] deteriorates
when tasked with longer runs.

Social navigation frameworks like [19], [20], [21] fo-
cus on collision avoidance while also adhering to social
norms, enabling robots to anticipate and respect human
movement/interaction in social spaces. In contrast, the focus
of our work is to address the challenges of local navigation,
which in turn, can also contribute towards improving human-
aware navigation.
Our Contribution Over SOTA: Our proposed approach
aims to find the middle ground between model-based plan-
ning and purely learning-based approaches. We aim to

make the algorithmic parameters of the model-based plan-
ners adaptive to the environmental conditions. At the same
time, we intend to improve performance in novel scenarios.
We fulfill both these objectives by combining generative
model (VQ-VAE+PixelCNN) based imitation learning with
an expressive model-based planner PRIEST [1] capable of
searching across multiple homotopies. As mentioned earlier,
the VQ-VAE+PixelCNN can be seen as learning a prior
over the optimal trajectories while PRIEST provides the
inference-time refinement.

III. METHODOLOGY

A. Problem Formulation

We follow the trajectory optimization template and formulate
crowd navigation in the following manner.

min
x(t),y(t)

c(x(q)(t), y(q)(t)), (1a)

x(q)(t0),y
(q)(t0) =b0, x(q)(tf),y

(q)(tf) =bf , (1b)

ẋ2(t)+ẏ2(t)≤ v2max, ẍ2(t)+ÿ2(t)≤ a2
max, (1c)

−(x(t)−xo,j(t))
2

a2
j

−(y(t)−yo,j(t))
2

a2
j

+1 ≤ 0, (1d)

where (x(t), y(t)) and (xo,j(t), yo,j(t)) respectively denote
the robot and the jth obstacle position at time t. These obsta-
cles could be either individual LiDAR points or a dynamic
human. We model each type as a circular obstacle with radius
aj . The function c(.) could be any arbitrary function (even
non-smooth, non-analytic) of derivatives of the position-level
trajectories. We can also leverage the differential flatness
of a typical mobile robot to include control costs in c(.).
The vectors b0 and bf in (1b) represent the initial and
final values of boundary condition on the qth derivative of
the position-level trajectory. We employ q={0, 1, 2} in our
implementation. Inequalities (1c) bound the maximum values
of velocities and accelerations. In (1d), we enforce collision
avoidance, assuming circular obstacle with radius aj .

We can convert (1a)-(1d) into a finite-dimensional repre-
sentation by parameterizing the trajectories as polynomials
in the following manner. x(t1)

...
x(tnp

)

T

= P cx,

 y(t1)
...

y(tnp
)

T

= Pcy,W =

[
P 0
0 P

]
(2)

where the matrix P is a matrix formed by time-dependent
polynomial basis functions. The vectors cx, cy are the co-
efficients attached to the individual basis functions. We can
represent the derivatives like ẋ(t), ẍ(t), ẏ(t), ÿ(t) in a similar
manner as (2) using Ṗ and P̈

Using (2), we can represent (1a)-(1d) in the following
compact form, wherein ξ = (cx, cy)

min
ξ

c(ξ) (3a)

Aξ = beq (3b)
g(ξ) ≤ 0, (3c)

Fig. 3: The VQ-VAE pipeline is used to learn the discrete latent space of optimal demonstration trajectories. We train the VQ-VAE to predict polynomial
coefficients that are converted to trajectories through (2). This ensures that the reconstructed trajectories have higher continuity and differentiability.

B. Learning the Discrete Latent Space of Solutions Through
VQ-VAE

We intend to learn the solution space of (1a)-(1d) through
demonstration of optimal trajectories in a similar style as
our prior work [22] designed for autonomous driving. To
this end, we first compress the demonstration trajectories to
a discrete latent space. Such representation can capture the
multi-modality in the solution trajectories such as avoiding
obstacles from the left vis-a-vis from the right.

Our VQ-VAE architecture, illustrated in Fig. 3 adapts
the original formulation [23] for trajectory generation. We
use a CNN encoder to compress expert trajectories into a
continuous latent space Ze ∈ RL×D, where L denotes the
number of latent vectors, each with dimension D. We denote
the ith latent vector in Ze as ze,i. The fundamental feature
of VQ-VAE is the transformation from continuous space
to a discrete one: mapping Ze to Zq . To achieve this, we
introduce a latent embedding matrix E ∈ RK×D called code-
book with K discrete vectors ej . Each ith latent vector in
Ze is assigned the nearest ej vector based on the nearest
neighbor equation detailed in (4), which makes up the ith

latent vector in Zq .

zq,i = er, where r = argmin
j

||ze,i − ej ||22

for i ∈ {1, 2, ..., L} (4)

The VQ-VAE decoder receives Zq and reconstructs it to
polynomial coefficients ξ and subsequently to trajectories
using (2). The VQ-VAE model is optimized using the loss
function detailed in (5), which comprises three parts. The
first term is the reconstruction loss which ensures that
the encoder/decoder pair effectively reconstructs the input
expert trajectory. The second and third terms are called the
codebook and commitment loss, which are used to update
the code-book vectors during training and bypass the non-
differentiable discretization presented in (4).

Lvqvae = ∥Wξ − τ e∥22 + ∥sg[Ze]−E∥22
+ β∥Ze(x)− sg[E]∥22 (5)

Fig. 4: It is possible to express the learned discrete latent space Zq as a
vector hq whose elements signify which code-book vector is used to form
the ith row of Zq . Our PixelCNN model outputs a multinomial probability
distribution over hq . The number of discrete probabilities pk is equal to
the number of code-book vectors. Thus, the PixelCNN model decides the
probability that the ith element of hq is formed by the rth code-book
vector. Sampling from the multi-nomial distribution allows the generation
of different hq each leading to a distinct trajectory.

C. Using a Conditional PixelCNN for sampling from the VQ-
VAE latent space

For sampling from the latent space of the VQ-VAE, we
adapt the Conditional PixelCNN [11] that allows us to
model the conditional distributions of the space. Using this
model, we can generate diverse trajectories (via the VQ-
VAE decoder) for different environments in which the robot
operates, by simply conditioning it on features extracted
from the occupancy grid map, dynamic obstacle states, and
immediate heading to the goal.

We recall that the discrete latent space is a matrix Zq .
Each row of this matrix is formed by zq,i which in turn is
related to the rth code book vector through (4). Thus, it is
trivial to encode the information about Zq into a vector hq

in which each element stores the index of the corresponding
codebook vector used to form zq,i (see Fig.4). Hence, the
training of the VQ-VAE in the last section provides us the
ground-truth values of hq .

The PixelCNN model outputs a multinomial probability
distribution over hq . We can sample from this distribution to
generate different hq samples and consequently diverse Zq .
This in turn can be fed to the trained decoder of VQ-VAE
to generate trajectory samples.

The defining feature of the PixelCNN model is that the
probability distribution over hq is generated in an auto-

Fig. 5: At any given planning step, the VQ-VAE+PixelCNN combination
takes in the perception input and generates samples for initialization of
the PRIEST planner [1]. The planner subsequently refines the predicted
distribution using a combination of projection-optimizer augmented cross-
entropy method [24]

regressive manner through (6). That is, the prediction of each
element of hq depends on the prediction of the previous
elements and the conditioning input. During the training
phase, we form a cross-entropy loss over the ground-truth
hq (from VQ-VAE) and that predicted by PixelCNN to learn
the parameters of the multinomial distribution.

p(hq|O) =

L∏
i=1

p(hq,i|hq,1, . . . ,hq,i−1,O) (6)

In the inferencing phase, we start with hq set to zeros and
using the trained PixelCNN, we recursively generate indices
hq, i through (6) based on the observed conditioning input,
to obtain a multinomial distribution for each element of hq .

D. Inference-Time Optimization

Although, VQ-VAE and PixelCNN are powerful generative
models, their generated trajectories may not exactly satisfy
the different kinematic and collision constraints. Thus, we
refine the PixelCNN-generated trajectory distribution with a
sampling-based optimization PRIEST [1]. Specifically, we
replace the Gaussian distribution initialization of PRIEST
with our PixelCNN model (see Fig. 5).

E. Data Collection Pipeline and Perception Network Archi-
tecture

1) Data Collection Pipeline: The training data for the
pipeline includes expert trajectories of a robot navigating
highly dynamic environments, used to train the unconditional
VQ-VAE, and observation data for training the PixelCNN
model. All data was collected in a simulated setting using the
PEDSIM social-force library [25] and the Gazebo simulator
[26]. We teleoperated a Turtlebot2 within the open-source
Lobby World environment, featuring 35 dynamic agents. The
simulated positions of these agents (agent states) and LiDAR
scans were used as ground truth inputs. The teleoperated
expert trajectories were pre-processed using the PRIEST
planner. This resulted in smoother trajectories that proved
more conducive to training VQ-VAE.

For PixelCNN training, the observation data comprising of
LiDAR scans and dynamic agent states were pre-processed
to match the network’s input requirements. LiDAR scans
were converted to Occupancy Maps, and dynamic agent
states were used to calculate agent velocities. Additionally,
odometry data was processed to generate ego velocities and
the heading-angle-to-goal.

2) Perception Network Architecture: The Perception Net-
work encodes the observation space into a single condition-
ing vector which is passed to the PixelCNN. It accepts an
occupancy map in the form of a single channel image O ∈
RH×W×1, positions and velocities of dynamic obstacles for
the past T (= 5) timesteps D ∈ RT×4×M where M(= 10)
is the maximum number of dynamic obstacles. We also use
the current heading of the mobile robot to the current goal in
radians −π ≤ H ≤ π as an input to the perception network.

Occupancy map O is encoded via four 2D convolutions
with batched normalization, adaptive average pooling, and
a series of fully connected (FC) layers to yield a single
embedding. Each timestep of the dynamic obstacle input D
is passed through a similar architecture as the occupancy map
encoder, but utilizing 1D convolutions instead, resulting in
T vectors. These are then passed through an LSTM and a
FC layer to yield a single embedding. Finally, the heading
H is processed through a FC layer and concatenated with
the occupancy map and dynamic obstacle embedding. This
concatenated vector is then passed through a FC layer for
the final conditioning embedding O.

IV. VALIDATION AND BENCHMARKING

The objective of this section is to answer the following
questions.

1) Does our method generalize to multiple pedestrian den-
sities and environments?

2) How does our method compare to the current state-of-
the-art methods?

3) Is our method reliant on a global plan?

A. Implementation Details

The VQVAE codebook is set to 64 vectors, of size 4 each.
The input occupancy map is generated using a 5m maximum
observation radius and a 0.1 resolution. The number of
PRIEST iterations is set to 2 (6x lower than the original),
with 50 initial samples drawn from the distribution predicted
by the PixelCNN. The PRIEST optimization is done using a
maximum of 10 dynamic obstacles and 100 static obstacles
(from the downsampled point cloud). All inference is done
on an NVIDIA 3060 Mobile GPU with 6GB of VRAM but
occupies less than 1GB in practice.

B. Simulation Configuration

1) Robot Configuration: We use the Turtlebot2 Robot
equipped with a 2D LIDAR sensor used for mapping the
environments before runs and as the primary sensor to
navigate in the environment during each run. We use the
open-source AMCL [27] library for localization during trials.

2) Environment Configuration: We naturally test in the
Lobby World environment on which our pipeline has been
trained. The other unseen environments we test on include
Cumberland, Freiburg, Autolab, and Square world described
in the DRL-VO paper as well as an additional custom
Hospital world. All these environments had 35 dynamic
pedestrians, and in the Lobby, Cumberland, and Square
worlds, we additionally tested with 55 dynamic pedestrians.

(a) Trajectories at 3 stages of the pipeline. VQVAE + PixelCNN generate diverse primitives (GREY),
which are then optimized via 2 PRIEST [1] iterations (GREEN) and the best trajectory as scored by
PRIEST is chosen (RED).

(b) CrowdSurfer improves upon the computation
times of PRIEST while also delivering better
results in navigation than both PRIEST (Table
III) and DRL-VO (Table I). Our pipeline, being
a trajectory rollout approach, still achieves real-
time frequencies of approx. 20 Hz, making it
easily deployable on real-world robots (Fig. 1)

Fig. 6: (a) Qualitative Results and (b) Compute Time Comparison

C. Qualitative Results

Figure 6a shows the typical trajectories resulting from our
pipeline in Cumberland and Lobby environments. The VQ-
VAE+PixelCNN trajectories are shown in grey. As can be
seen, these trajectories are very diverse but do not necessarily
converge at the goal location. The trajectory distribution
resulting after refinement from the PRIEST optimizer is
shown in green. As can be seen, the refined trajectories are
smoother, directed towards the goal, and show multi-modal
behavior for avoiding collisions. We find that 2 iterations
of PRIEST optimization are enough for all the experiments
reported in this section.

D. Comparison with DRL-VO [2]

In order to measure the efficacy of our method, we compare
it against DRL-VO [2], a state-of-the-art dynamic scene
navigation algorithm. We provide test results, using the
Gazebo simulator and the PEDSIM library, in 3 distinct
environments and different densities of pedestrians. We first
consider performance when the global plan is provided, to
replicate the original DRL-VO testing conditions exactly. We
compare using four commonly used metrics in the literature:

1) Success Rate: the fraction of trials where the robot
reaches the goal without any collisions.

2) Average Time: average travel time across trials
3) Average Length: average length of the entire path to

goal across trials
4) Average Speed: average travel speed across trials

For each environment and pedestrian density, we assign 20
successive goal points. Each goal point is a single trial. A
trial is considered successful if the goal is reached without
collisions. In case of failure, the current goal is used as the
initial position, and trials continue from the next goal. The
average speed and distance metrics are computed exclusively
for successful trials, where the agent successfully reached its
designated goal.

Table I shows the previously described metrics for three
of the testing environments. Cumberland and Square World

were unseen environments for our VQ-VAE+PixelCNN
model. As can be seen, we show strong success rates on
Lobby World which was seen during training. However,
more importantly, our performance generalizes well to the
unseen scenarios. In all environments, our method consis-
tently outperforms DRL-VO with a success rate upwards of
0.8 with both 35 and 55 pedestrians. This is approximately
40% improvement over DRL-VO.

Additionally, our pipeline is able to traverse the benchmark
scenarios with a higher average speed, and a lower average
path length in most cases than those observed with DRL-
VO. This is indicative of the reactive nature of DRL-VO,
as compared to the long-horizon planning afforded by our
pipeline. In some cases, as in Cumberland and Square World
environments, DRL-VO takes a lower trajectory length by
showing more aggressive planning behavior. However, our
pipeline still yields a lower average time in these cases by
planning ahead.

It is important to highlight that the DRL-VO performance,
especially the success rate that we obtained is substantially
lower than that reported in [2]. One reason for this is
that we benchmark with substantially longer runs than [2].
Specifically, the start-to-goal distance in our benchmarking
is almost twice what is used in [2].

DRL-VO compute times were typically lower at approx-
imately 0.022 seconds, owing to its one-shot planning ap-
proach and reactive nature. However, our pipeline has a
compute time adequately low for real-time functioning of
approximately 0.041 seconds despite calculating trajectories
over a horizon of 5 seconds with 50 timesteps as can be seen
in Fig. 6b.

E. Adapting to Changing Map

In this subsection, we test the adaptivity of our approach and
DRL-VO to the changes in the static environment. We take
the Square World environment with 25 dynamic pedestrians
and add additional static obstacles. These obstacles were not
seen during the mapping and thus, the prior-compute plan

Success Rate ↑ Average Time [s] ↓ Average Length [m] ↓ Average Speed [m/s] ↑Planner Type Environment Method 35 55 35 55 35 55 35 55
DRL-VO 0.65 0.55 19.06 23.68 12.2 13.5 0.64 0.57Lobby World CrowdSurfer 0.85 0.80 17.58 21.67 12.66 13.65 0.72 0.63
DRL-VO 0.75 0.55 16.57 18.57 10.11 11.14 0.61 0.60Cumberland CrowdSurfer 0.90 0.85 15.16 19.73 11.37 12.82 0.75 0.65
DRL-VO 0.80 0.80 19.81 26.39 14.86 18.74 0.75 0.71

w/ Global Planner
(Dijkstra)

Square World CrowdSurfer 0.90 0.90 18.5 24.55 14.43 16.94 0.78 0.69
DRL-VO 0.45 0.40 25.41 26.47 16.01 14.29 0.63 0.54Lobby World CrowdSurfer 0.75 0.65 23.44 28.75 16.17 18.11 0.69 0.63Cumberland CrowdSurfer 0.75 0.65 21.22 26.59 13.37 17.20 0.63 0.47
DRL-VO 0.65 0.60 31.40 35.86 22.61 23.67 0.72 0.66

w/o Global Planner

Square World CrowdSurfer 0.80 0.80 29.61 32.71 21.91 21.26 0.74 0.65

TABLE I: Navigation results for three selected testing environments with 35 and 55 dynamic pedestrians. (Average Values are only for successful
scenarios). Our pipeline shows a significant improvement in success rate in the navigational tasks performed in densely crowded scenarios as opposed to
DRL-VO.

becomes infeasible on many runs. Table II summarizes the
key results for 9 trials. As can be seen, the DRL-VO success
rate dropped from 0.75 (Table I) to 0.44. In contrast, our
approach showed a very marginal drop to 0.89 from 0.90
(Table I).

F. Reliance on Global Plan

Table I (second half) compares the performance of DRL-
VO and our approach in the absence of guidance from the
global plan. More specifically, the global plan is simply a
straight line connecting the start and the goal. As can be
seen, although the success rate reduces for both approaches,
the performance falloff is steeper for DRL-VO dropping
approximately 28% on average. In contrast, our approach is
much more robust dropping approximately 15% on average.

G. Ablation: Comparison with PRIEST [1]

Our pipeline builds on PRIEST by augmenting it with a
learned and environment-conditioned initialization through
the VQ-VAE+PixelCNN model. Thus, this sub-section an-
alyzes the impact that our learned model provides over
the regular PRIEST pipeline. We consider the Cumberland
environment with 35 dynamic agents as PREIST performed
best in this setting. The results are summarized in Table III.
We showcase the statistics for different computation budgets
of PRIEST (2, 10, 12 iterations). As can be seen, the envi-
ronment conditioned prior provided by VQ-VAE+PixelCNN
dramatically improves the success rate along with average
travel time, path length, and speed.

Method Success Rate ↑
DRL-VO 0.44

Ours 0.89

TABLE II: Navigation Results with continuously changing environments

Method Success Rate ↑ Time[s] ↓ Length[m] ↓ Speed[m/s] ↑
PRIEST-2 0.20 62.72 18.19 0.29

PRIEST-10 0.30 56.00 16.24 0.29
PRIEST-12 0.60 53.79 17.75 0.33

Ours 0.90 31.40 23.5 0.75

TABLE III: Ablation Study with PRIEST planner [1]. The PRIEST
planner is run for different iterations (2, 10, 12)

H. Real World Configuration

We have tested our pipeline in the real world on two
different robots:

• The Husky A200 mobile robot, which we have equipped
with a SLAMTEC RPLIDAR S2 and an Intel® Re-
alsense D455 RGBD Camera as the primary sensors

• A custom-made Autonomous Wheelchair equipped with
a SLAMTEC RPLIDAR A3 and an Intel® Realsense
D455 RGBD Camera as the primary sensors

For the detection of humans in the scene, we use two
different methods and play around:

• A combination of YOLO [28] in the image frame and
lidar for accurate depth information.

• Leg Tracker [29]: Detects leg-like patterns in lidar scans
using clustering.

The testing was done in the lab at RRC, IIIT Hyderabad,
and various static and dynamic obstacles were added during
navigation, as can be seen in Figure 1.

V. CONCLUSION

This paper proposed a novel framework that couples
generative prior models learned on expert data with infer-
ence time optimization to show results that are significantly
better than prior art in highly populated pedestrian worlds
containing as many as 55 moving pedestrians. While the
generative priors are efficient in exploring the homotopies
and are inherently multimodal they are not goal-conditioned
and are not guaranteed to avoid collisions. The method of
inference time batch projection ensures both these conditions
are met with a very high degree of accuracy. Further, the
efficacy of the proposed framework in the absence of a
global plan or in changed environments where the planner
is rendered ineffective is a cornerstone of this effort. In the
future, we expect to condition the generative prior on both
image and range data even as we focus on improving real-
time performance with higher fidelity.

ACKNOWLEDGEMENTS

The author, Laksh Nanwani, thanks IHub-Data, IIIT Hy-
derabad, for extending their research fellowship. We also
acknowledge IHub-Data for supporting this work.

REFERENCES

[1] F. Rastgar, H. Masnavi, B. Sharma, A. Aabloo, J. Swevers, and
A. K. Singh, “Priest: Projection guided sampling-based optimization
for autonomous navigation,” IEEE Robotics and Automation Letters,
2024. 1, 2, 4, 5, 6

[2] Z. Xie and P. Dames, “Drl-vo: Learning to navigate through crowded
dynamic scenes using velocity obstacles,” IEEE Transactions on
Robotics, vol. 39, no. 4, pp. 2700–2719, 2023. 1, 2, 5

[3] R. Valner, H. Masnavi, I. Rybalskii, R. Põlluäär, E. Kõiv, A. Aabloo,
K. Kruusamäe, and A. K. Singh, “Scalable and heterogenous mobile
robot fleet-based task automation in crowded hospital environments—a
field test,” Frontiers in Robotics and AI, vol. 9, p. 922835, 2022. 1

[4] A. Pratkanis, A. E. Leeper, and K. Salisbury, “Replacing the office
intern: An autonomous coffee run with a mobile manipulator,” in 2013
IEEE International Conference on Robotics and Automation. IEEE,
2013, pp. 1248–1253. 1

[5] X. Xiao, Z. Xu, Z. Wang, Y. Song, G. Warnell, P. Stone, T. Zhang,
S. Ravi, G. Wang, H. Karnan et al., “Autonomous ground navigation
in highly constrained spaces: Lessons learned from the barn challenge
at icra 2022,” arXiv preprint arXiv:2208.10473, 2022. 1, 2

[6] J. Bi, T. Xiao, Q. Sun, and C. Xu, “Navigation by imitation in a
pedestrian-rich environment,” arXiv preprint arXiv:1811.00506, 2018.
1

[7] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in 2019 international conference on robotics and
automation (ICRA). IEEE, 2019, pp. 6015–6022. 1, 2

[8] Z. Zhou, P. Zhu, Z. Zeng, J. Xiao, H. Lu, and Z. Zhou, “Robot
navigation in a crowd by integrating deep reinforcement learning and
online planning,” Applied Intelligence, vol. 52, no. 13, pp. 15 600–
15 616, 2022. 1, 2

[9] C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational
graph learning for crowd navigation,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 10 007–10 013. 1, 2

[10] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation
learning,” Advances in neural information processing systems, vol. 30,
2017. 1

[11] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves
et al., “Conditional image generation with pixelcnn decoders,” Ad-
vances in neural information processing systems, vol. 29, 2016. 1,
3

[12] G. Shafabakhsh and M. Mohammadi, “Simulation of pedestrian move-
ments using social force model,” Journal of Modeling in Engineering,
vol. 11, no. 34, pp. 49–62, 2013. 2

[13] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE international
conference on robotics and automation. Ieee, 2008, pp. 1928–1935.
2

[14] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997. 2

[15] C. Rösmann, F. Hoffmann, and T. Bertram, “Timed-elastic-bands for
time-optimal point-to-point nonlinear model predictive control,” in
2015 european control conference (ECC). IEEE, 2015, pp. 3352–
3357. 2

[16] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal
of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357,
2017. 2

[17] I. S. Mohamed, K. Yin, and L. Liu, “Autonomous navigation of agvs
in unknown cluttered environments: log-mppi control strategy,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 10 240–10 247,
2022. 2

[18] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 3052–3059. 2

[19] N. Hirose, D. Shah, A. Sridhar, and S. Levine, “Sacson: Scalable
autonomous control for social navigation,” IEEE Robotics and Au-
tomation Letters, vol. 9, no. 1, pp. 49–56, 2024. 2

[20] X.-T. Truong and T. D. Ngo, “Toward socially aware robot navigation
in dynamic and crowded environments: A proactive social motion
model,” IEEE Transactions on Automation Science and Engineering,
vol. 14, no. 4, pp. 1743–1760, 2017. 2

[21] G. Ferrer, A. Garrell, and A. Sanfeliu, “Social-aware robot navigation
in urban environments,” in 2013 European Conference on Mobile
Robots, 2013, pp. 331–336. 2

[22] S. Idoko, B. Sharma, and A. K. Singh, “Learning sampling distribution
and safety filter for autonomous driving with vq-vae and differentiable
optimization,” arXiv preprint arXiv:2403.19461, 2024. 3

[23] A. v. d. Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete
representation learning,” arXiv preprint arXiv:1711.00937, 2017. 3

[24] M. Wen and U. Topcu, “Constrained cross-entropy method for safe
reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 31, 2018. 4

[25] C. Gloor, “PEDSIM: Pedestrian crowd simulation,” 2016. [Online].
Available: http://pedsim.silmaril.org 4

[26] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ international
conference on intelligent robots and systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. Ieee, 2004, pp. 2149–2154. 4

[27] B. P. Gerkey, “Amcl - ros wiki.” [Online]. Available: https:
//wiki.ros.org/amcl 4

[28] G. Jocher, A. Chaurasia, and J. Qiu, “Yolo by ultralytics,” https://
github.com/ultralytics/ultralytics, 2023. 6

[29] A. Leigh, J. Pineau, N. Olmedo, and H. Zhang, “Person tracking
and following with 2d laser scanners,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 726–733.
6

http://pedsim.silmaril.org
https://wiki.ros.org/amcl
https://wiki.ros.org/amcl
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

	Introduction
	Related Works
	Methodology
	Problem Formulation
	Learning the Discrete Latent Space of Solutions Through VQ-VAE
	Using a Conditional PixelCNN for sampling from the VQ-VAE latent space
	Inference-Time Optimization
	Data Collection Pipeline and Perception Network Architecture
	Data Collection Pipeline
	Perception Network Architecture

	Validation and Benchmarking
	Implementation Details
	Simulation Configuration
	Robot Configuration
	Environment Configuration

	Qualitative Results
	Comparison with DRL-VO xie2023drl
	Adapting to Changing Map
	Reliance on Global Plan
	Ablation: Comparison with PRIEST rastgar2024priest
	Real World Configuration

	Conclusion
	References

